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The Amsterdam Density Functional (ADF) package has been used to constrain Kohn−Sham DFT in such a fashion
that a transition from KS-DFT to ligand-field theory in the form of the parametrical dq model is completely well-
defined. A relationship is established between the strong-field approximation of the parametrical d2 model for the
tetrahedral complexes VCl4- and VBr4

- and certain fixed-orbital ADF-computed energies. In this way values for all
the parameters of the d2 model may be computed, thus allowing the ADF results to be expressed in terms of a
KS-DFT energy matrix that can be diagonalized. This means that the KS-DFT deficiency with regard to computation
of nondiagonal elements has been overcome and the KS-DFT eigenenergies have become available through the
KS-DFT mimicking of the ligand-field plus repulsion model. By using mutually orthogonal strong-field energy matrices,
the mimicking has been further elucidated. The computed values for the empirical parameters of VCl4- and VBr4

-

are in good agreement with experimental data. The spectrochemical and the nephelauxetic series have been
computed by including the remaining halide complexes and the quantitatively special position of F- among the
halides corroborated for both series.

1. Introduction

Ligand-field theory revolutionized the conceptual part of
classical transition metal chemistry 40 years ago.1 However,
there is still a need for elucidating the parameters of this
model theory by a systematic and transparent method of
computation of their numerical values. Our ambition here is
to describe such a method. Our method was designed to
provide qualitative insight, but it turned out to provide
valuable numerical information as well.

Historically the parametrical dq model was based upon the
electrostatic model in which the ligands perturbed the central
ion by virtue of the electrical charges or dipoles they
carried.2,3 The interelectronic repulsion between the electrons
of the central ion was not expected to change under the
influence of ligands modeled in this way. However, when

the parametrical dq model was used semiempirically, the
empirical values of the interelectronic repulsion parameters
found for complexes were invariably lower than those of
the corresponding gaseous ions.4 This fact was taken as
evidence of covalency of the bonds between the metal ions
and their ligands. It was explained mainly by an invasion of
charge from the ligands into the central ion region, thereby
causing a screening of the d electrons from the nucleus
(central field covalency). The concurring radial expansion
of the d orbitals was named nephelauxetism or cloud
expansion of the partially filled shell.4 This conceptual
interpretation made the basis for the naming of the expanded
radial function model.4c An alternative qualitative explanation4c

of the phenomenon of nephelauxetism could be given in a
linear combination of atomic orbitals molecular orbital
(LCAO-MO) vocabulary where the eigenorbitals of the
partially filled shell would contain d-character in a diluted
form being a linear combination of d orbitals and symmetry-
adapted ligand orbitals (symmetry-restricted covalency). With
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the work using the present method, we hope eventually to
become able to cast new light upon these cooperating
covalencies and in particular to be able to associate these
with the nephelauxetic series of ligands.4

Density functional theory (DFT) has invaded chemistry
with considerable impact. Commercially available program
packages5,6a using Kohn-Sham DFT may already be con-
sidered to be one of chemistry’s standard tools.7 As far as
we are concerned, it is the fact that KS-DFT is an orbital
model which has attracted us by the perspective of making
it commensurable with the parametrical dq model.

Some efforts in the direction of obtaining a correspondence
between DFT and LFT focused on the ligand field itself by
attempting to achieve commensurable orbital splitting pat-
terns by the two methods.8 The interelectronic repulsion part
of LFT could be included by using the suggestion of Ziegler
et al.,9 in which the energies of many electron eigenfunctions
are written as linear combinations of those of single Slater
determinantal functions. Through these Slater determinants
an approximate 1:1 correspondence with KS-DFT was
suggested, allowing their energy expectation values to be
computed.9 Thus, ifsfor a given electron configurations
the number of determinants that are associated with different
energies is equal to or greater than the number of eigenen-
ergies, these can be calculated by solving a system of
simultaneous linear equations. Unfortunately, the devised
method turned out to have limitations that were illustrated9

by an example using symmetry: the first excited configu-
ration of benzene is of the type e1e2(D6) giving the six states
3,1B1, 3,1B2, 3,1E but only four determinants of different
energies. Daul10 developed and used11 this suggestion by
applying the method of irreducible tensor operators and
proposed to use a number of Slater determinants equal to
the number of so-called reduced matrix elements, which are
the parameters to be determined. Any remaining Slater
determinants were described as redundant. This proposal
suffers from an arbitrary selection of the Slater determinants
used and thereby the risk of incorporating systematic errors
of the KS-DFT in the parametric results.

In order to circumvent this arbitrariness and in order to
be able to analyze in more detail the strengths and shortcom-

ings in the DFT modeling of LFT, we have recently
introduced an intermediate step where we use the complete
set of Slater determinants and reduce their calculated energies
to multiplet term energies by solving an overcomplete set
of linear equations. The use of real orbitals circumvented
certain symmetry problems of KS-DFT.

We have demonstrated this method by using the ADF
package to compute successfully a set of Slater-Condon-
Shortley (SCS) parameters of interelectronic repulsion refer-
ring to atomic dq ions.12 The method used for these atomic
computations conserved the concepts of ligand-field theory
apart from the fact that we only reached the stage of zero
ligand field. This approach has now been developed so as
to make it in principle applicable to ligand-field systems,
and we demonstrate this usage here.13 We are particularly
focusing on the phenomenon of nephelauxetism, which has
only been experimentally quantified for systems with orbit-
ally nondegenerate ground states. Tetrahedral VCl4

- is an
example of such a system.

This ion was predicted by ligand-field theory to have a
ground state3A2(Td) belonging to the half-filled subconfigu-
ration, [e(Td)]2. Since the ligand field is barycentered, this
configuration gives rise to a maximal ligand-field stabiliza-
tion for a tetracoordinated dq system. The ion was subse-
quently prepared and isolated in the form of its tetraethyl-
ammonium salt.14a This complex and its homologous com-
plexes with the other halides will be used here as an
illustration of our method.

2. The Parametrical dq Model

Ligand-field theory of d electrons is a model theory
concerned with energy differences between the states of the
partially filled d shell, which can be classified as having a
parentage of mainly a dq configuration of the central ion.
This classifying dq configuration was named the preponderant
configuration by Jørgensen.15 For 2 e q e 8 the ligand-
field model embodies a one-electron term called the ligand
field, LF, and a two-electron term representing the inter-
electronic repulsion, R, within the partially filled shell. The
two terms are expressed semiempirically, that is, in energy
parameters whose values are determined by comparison of
theory and experiment. These empirical parameters of the
combined ligand-field plus repulsion model, LFR, will be
computed here by the ADF.

In most formulations the one-electron and two-electron
terms have their own zero points of energy, which cannot
be separated or otherwise elucidated or determined by the
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comparison with experiments.1 It is possible to eliminate
these zero point problems by barycentration,16,17,18cthat is,
by isolating the average energy of all the states under
consideration. Thus the Hamiltonian can be written as

where ĤLFR acts on the so-called dq configuration or a
subspace thereof. In the present paper we shall discuss the
d2 configuration and restrict ourselves to the subspace
consisting of the 10 states withMS ) S) 1, that is, theMS

) 1 states whose central ion parentages are theMS ) 1
components of the multiplet terms3P and3F. Moreover, we
shall only discuss tetrahedral complexes of the type VX4

-

with VIII as the central ion. These restrictions do not in any
way prevent us from describing our method, but they do
simplify our presentation. Thus, we have obtained a situation
where we are left with one ligand-field parameter∆ and one
repulsion parameter, the Racah parameterB, which we shall
denote byB1 here, 1 referring toS ) 1. The definitions of
the parameters are illustrated in a and b:

In these circumstances the parametrical dq model can be
written as a sum of conglomerate operators,12,16,17 each of
which is a product of a parameter and its associated
coefficient operator

where the coefficient operatorsQ̂h ∆ and Q̂h B
1 are barycen-

tered and mutually orthogonal. 1ˆ is the operator whose matrix
is a unit matrix in any orthogonal function basis. The concept
of orthogonality derives from the idea of a scalar product
(or overlap)18 of a pair of operatorsÂ andB̂, which for real

matrices are defined by

The value is independent of the function basis in which the
matrices are set up. Equation 3 provides analogies on the
one hand between vectors and operators, and on the other
hand between vectors and the matrices of these operators in
any fixed basis. This vector/operator analogy has been used
before to quantify parametrical ligand-field theory,12,16 and
the vector/matrix analogy will be used in section 4 to
illustrate our present method of mimicking LFR by ADF.

The fact that only energy differences are observable as
empirical parameters of ligand-field theory is often built into
the model by barycentration, in which case the weighted sum
of the energies of the complete set of dq states equals zero.19

The same applies, of course, to their weighted average
energy. A measure of the average energy splitting of the dq

configuration may then be taken as the root-mean-square
splitting. The weighted sum of the squares of the eigenen-
ergies of all the barycentered states has been called the sum
square splitting (SSS).16

The SSS is closely related to the overlap of eq 3. In fact,
it is the self-overlap of the barycentered Hamiltonian. For
any fitted model describing the experiment, the modeled sum-
square splitting will be lower than the experimental one.19

Furthermore, if the model is a sum of orthogonal operators
like in eq 2, the sum-square splitting is a sum of contributions
from the individual parameters:

that is, not containing cross products of parameters.

3. Constraining Kohn-Sham DFT

KS-DFT must, when used for mimicking LFR, treat all
the states of the partially filled shell on an equal footing.
This implies that each complex imposes an average of
configuration reference state of its own and thus each
complex imposes different constraints on the KS-DFT.
Because of these constraints KS-DFT cannot be applied
energetically optimally when the aim is to simulate an LFR
description.

All the calculations presented here were done with the
2002.01 version of the ADF package using the triple-ú basis
sets with two polarization functions for vanadium but only
one polarization function for the halides. These choices
solved the SCF convergence problems in the simpler basis
sets and gave the correct ordering of the complexes in the
nephelauxetic series. The gradient-corrected functional PW91
was used,20 since the uncorrected ones (LDA) were previ-
ously found to treat the interelectronic repulsion less
convincingly.12 In the iodine basis set the orbitals are
unfrozen only from above 4s. For reasons of analysis the
fragments were chosen as vanadium(III) and halide anions.
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(17) (a) Scha¨ffer, C. E. Inorg. Chim. Acta2000, 300, 1053. (b) Scha¨ffer,
C. E. Struct. Bonding1973, 14, 69. (c) Scha¨ffer, C. E. In WaVe
Mechanicssthe first 50 years; Price, W. C., Chissick, S. S., Ravens-
dale, T., Eds.; Butterworth: London, 1973; Chapter 12.

(18) (a) Scha¨ffer, C. E.Physica A (Amsterdam)1982, 114A, 28. (b) Brorson,
M.; Damhus T.; Scha¨ffer, C. E.Comments Inorg. Chem.1983, 3, 1.
(c) Brorson, M.; Scha¨ffer, C. E. Inorg. Chem.1988, 27, 2522.

(19) Bendix, J.; Brorson, M.; Scha¨ffer, C. E.Inorg. Chem.1993, 32, 2838.
(20) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson,

M. R.; Singh, D. J.; Fiolhais, C.Phys. ReV. B 1992, 46, 6671.

ĤLFR ) ĤLF + ĤR ) Hav1̂ + Ĥh LF + Ĥh R ) Hav1̂ + Ĥh LFR (1)

Ĥh LFR ) Hav1̂ + ∆Ĥh ∆ + B1Ĥh B1

Ĥh LFR ) ∆Ĥh ∆ + B1Ĥh B1

(2)

〈Â|B̂〉 ) ∑
i,j

A ijBij (3)

SSSexp > SSSmodel) (B1)2〈 Q̂h B1|Q̂h B1〉 + ∆2〈Q̂h ∆|Q̂h ∆〉 (4)
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Three different types of computations will be needed here,
an unrestricted and a restricted SCF computation and a fixed-
orbital computation. In this fixed-orbital application the ADF
is used as an experimental device having an experimental
uncertainty, and the parametrical results are obtained by using
a least-squares averaging of the computed set of state
energies. These types of computations will be described
below under the headings A, C, and E.

A. Geometry Optimization by Unrestricted Self-
consistent Field ADF Computation.The geometry of the
ground state resulting from this computation isTd symmetry
with a V-Cl distance of 225 pm. The geometry is fixed in
the following.

B. Orbital Identification by Symmetry and/or Plotting.
The energy order found for the Kohn-ShamR-spin orbitals
agrees with that predicted by usual heuristic qualitative MO

Table 1. Slater Determinants for One Representative Component of Each of the Four Tetrahedral Spin Triplet d2 Strong-Field Terms, and Their ADF
Energies for VCl4- a

a The energy difference between the et2 multiplets3T1 and3T2 is 80% of 15B1, i.e., 12B1, and that between3T2 (et2) and3A2 (e2) is ∆, giving B1 ) 0.0481
µm-1 and∆ ) 0.525µm-1, respectively. These values are close to the least-squares values of Table 3. The zero point of energy is that of the dq-AOC-SCF
computation. Note that the lower-energy3T1 is that containing most of the upper-energy term (3P) in agreement with the fact that the multiplet terms of the
gaseous ion are 80% mixed in the strong-field limit (strong-field approximation).

Table 2. Linking the Computed ADF-Model Energies with the LFR Parametersa

a HADF values refer to VCl4-. The subconfiguration (cf. Table 1) and the spatial pair-energy class12 define the coefficients to∆ andB1, respectively.
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considerations. The highest-energy nonempty set of orbitals
is singly occupied, a SOMO set, these orbitals carrying the
two electrons of the partially filled shell being of eR (Td)
symmetry type. The lowest-energy unoccupied orbital set,
the LUMO set, consists of the three orbitals of t2R (Td)
symmetry type. These frontier e and t2 orbitals identify the
partially filled shell, and their restricted counterparts will be
identifiable as the perturbed d orbitals of ligand-field theory
to be defined within the ADF by the restricted computation
of step C. These orbitals will be used to build up all the
states of the characterizing d2 ligand-field configuration of
the present paper. The orbital picture e2t20 with two electrons
in the partially filled shell is in a strong qualitative sense in
agreement with ligand-field theory. (This subconfiguration
implies that the ligand-field oxidation state of vanadium is
III, that is, equal to the conventional formal oxidation
number, which forms the basis for the classification of
vanadium chemistry.15,16)

The ADF-computational result then provides a quantitative
measure of the concordance with ligand-field theory in that
the noninteger difference between the electronic charges of
R and â electrons on vanadium is found by Mulliken
population analysis to be close to 2 (cf. Table 3). Thus, the
integrated, uncompensated spin on vanadium corresponding
to two electrons may be taken as a probe of the ligand-field
oxidation state. This fact has been noted earlier21 for the much
more covalent d1 system, CrN(CN)53-.

C. An Average-of-Configuration Computation (dq-
AOC). The dq-AOC computation is a restricted SCF-ADF
computation using appropriate frontier orbitals to represent
the partially filled shell. The occupation numbers here are

fractional. Described in subconfiguration form, they cor-
respond to the averaged configuration e4/5t26/5 of the d2

system. One may describe the situation as one of collecting
together the incommensurable orbitals of e(Td) and t2(Td)
symmetries into a single set of pseudo-spherical parentage.
The two electrons are in the dq-AOC computation evenly
distributed upon the 10 spin orbitals of the partially filled
shell whose main parentage is d orbitals withR andâ spins.
Thereby the electronic density and the potential created by
this density obtain tetrahedral symmetry so that the eigenor-
bitals belong to symmetry species (irreducible representa-
tions) of theTd point group. Thus the dq-AOC computation
defines all the KS-DFT orbitals and in particular those of
the partially filled shell. This dq-AOC-SCF computation is
the backbone of the ligand-field mimicking process. More-
over, for a particular complex, this is the only SCF
computation required to mimic the ligand-field modeling.
The orbitals provided by the dq-AOC computation remain
fixed (frozen) during the ligand-field mimicking process.
Almost as a gift, the Kohn-Sham orbital energy difference
between the e(Td) and t2(Td) orbitals of the dq-AOC computa-
tion turns out to agree numerically with the ligand-field one-
electron energy difference obtained by the mimicking process
(confer point E and Table 3). The total energy of the dq-
AOC computation serves in a ligand-field context as an
external zero point of energy, which normally would be
considered not to belong to the semiempirical model world
of ligand fields, whose concern is only energy differences.17

However, this zero point turns out to be more interesting
than expected (cf. appendix to ref 12). Finally, the dq AOC
computation corroborates all the usual qualitative molecular
orbital interpretations of the ligand-field model.

The dq-AOC computation, which is molecular, is as
analogous as possible to the atomic “average of configura-
tion” computation, “AOC”, recommended by the authors of
the ADF as a starting point for computations22,23 on atomic
fragments. We used the AOC in finding the parameters of
the SCS model for atomic dq systems.12 Our present
averaging of the partially filled shell configuration is
analogous to that suggested by Daul11b,13and by the authors
of the ADF22,23 for configurations (subconfigurations in a
ligand-field context) as, for example, et2

5. However, the
present averaging over the whole partially filled shell
provides the closest possible approach to the parametrical
dq model of the ligand field, which is characterized by the
condition that the interelectronic repulsion is parametrized
as if it had spherical symmetry, that is, by the Slater-
Condon-Shortley model, while the ligand field itself is
treated as having its proper symmetry, for example for VCl4

-,
the symmetryTd. The question has always been: How good
can such an inhomogeneous model be? However, there has
never been a real choice for the model that was simulta-
neously required to be semiempirical: while the spherical
model of repulsion on dq required two energy-difference

(21) Bendix, J.; Deeth, R. J.; Weyhermu¨ller, T.; Bill, E.; Wieghardt, K.
Inorg. Chem.2000, 39, 930.

(22) Baerends, E. J.; Branchadell, V.; Sodupe, M.Chem. Phys. Lett.1997,
265, 481.

(23) ADF program system, Theory, release 2002; Vrije Universiteit:
Amsterdam, 2002.

Table 3. Computational Resultsa

VF4
- VCl4- VBr4

- VI4
-

∆/µm-1 (MS ) 1 only) 0.693(4) 0.525(4) 0.475(3) 0.407(3)
∆aoc/µm-1 0.672 0.489 0.426 0.372
∆exp/µm-1 0.553 0.520
B1/µm-1 0.0576(10) 0.0481(6) 0.0465(5) 0.0442(4)
B1

exp/µm-1 0.0494 0.0435
Mulliken charges on V 1.46 0.63 0.78 -0.15
3d(VIII ) fraction in t2 79.45% 75.17% 73.50% 73.11%
3d(VIII ) fraction in e 88.77% 84.16% 82.56% 82.56%
4p(VIII ) fraction in t2 6.2% 2.9% 3.0% 2.6%
V-X/pm 185 225 241 263
V spin density

(ground state)
1.95 1.99 2.06 2.19

∆/µm-1 0.675(13) 0.500(12) 0.449(12) 0.377(12)
D/µm-1 0.443(11) 0.373(10) 0.361(10) 0.345(10)
B/µm-1 0.0587(28) 0.0489(26) 0.0473(25) 0.0449(26)
D/B 7.55 7.61 7.65 7.67

a ADF-computed values for the ligand-field (∆) and interelectronic
repulsion (B1) parameters of VX4- determined for each complex by a least-
squares fitting of the 10 uonRR-pair ADF energies to the LFR-parametrical
energy expressions.∆aoc is the KS orbital energy difference in the dq-AOC
SCF computation. The fractions refer to the contents of 3d (V3+) and 4p
(V3+) orbitals in the partially filled shell e(π) and t2(σ,π) of the tetrahedral
complexes. The spin-density on V refers to the net number of spin-up
electrons in the partially filled shell obtained from the unrestricted
calculation. The last four rows are the results of using all possible values
of MS (45 Slater determinants). The parameter used besidesB and ∆ is
Jørgensen’s spin-pairing energy parameterD (a linear combination of
Racah’s parametersB andC).29
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parameters, this number would have been 9 (an unattainable
number of empirical parameters) for the cubic model.3,24

D. Selection and Use of a Complete Set of d2 States
Representative of VCl4-. In this paper we restrict ourselves
to the 10RR states, which form the complete set of states
that haveMS ) 1. These states can be taken to represent all
the spatial combinations of the highest spin multiplicityS
) 1 associated with the d2 configuration of VCl4-. There is
a 1:1 relationship between each such state and a pair of
different orbitals. In the ADF, we use a state defined by
attributing occupation numbers of unity to both of its two
d-parentage orbitals.12 In the LFR the associated state is a
Slater determinant in the corresponding d orbitals perturbed
by the chemical bonding. Thereby a 1:1 relationship between
the ADF and the LFR states is established.

The Slater determinants in all the 10 possible pairs of the
five different R spin orbitals of e(Td) and t2(Td) spatial
symmetries make up all theRR determinants of the tetra-
hedral strong-field subconfigurations. The ADF allows the
orbitals and thereby the determinants to remain being
individually identifiable by their symmetry types, that is, the
standard components of the irreducible representations of the
tetrahedral point group. This standard refers to the groups
Td ⊃ D2 and was defined by Griffith3 for the hierarchyOh

⊃ D4h ⊃ D2h. (In fact the hierarchy used wasOh ⊃ (D4h) ⊃
D2h, the parentheses referring to group-theoretical sign details
that are irrelevant here.) Important for the use with KS-DFT
is the choice of real orbitals, whose squares are able to cope
with spatial symmetry requirements as opposed to the
absolute squares of the corresponding complex orbitals.12

Fortunately, the most common set of real d orbitals simul-
taneously belong to the hierarchies

and

and can be used to generate the standards referred to.25

E. ADF Computation of the Energies To Be Associated
with the 10 Pairs of R Spin Orbitals. As our inputs to the
ADF we use occupation numbers of the KS spin orbitals
whose orbital part is real (real spin orbitals). In order to match
a Slater determinant, these numbers have to be equal to unity
for the orbitals of the determinant and zero for all the
remaining spin orbitals. We shall write the pairs with unity
occupation numbers (uon) as, for example, (e:z2,R)(t2:yz,R)
corresponding to the Slater determinant

The energies computed by the ADF for orbital occupation
schemes with unity occupation numbers can be assumed to
represent the total energies in terms of expectation values12

for the states described by the corresponding Slater deter-
minants,9,10 these energies being measured relative to the
energy associated with the dq-AOC computation.

Among the 10 pairs ofR spin orbitals, the contribution to
the electronic density arising from the partially filled shell
has full tetrahedral symmetry only in the case of the pair
(e:z2,R)(e:x2-y2,R), which corresponds to the Slater deter-
minant

3A2(Td). The densities of all the otherRR-pairs have lower
symmetries and associated contributions to the effective
potential, also of lower symmetry. For this reason we cannot
impose tetrahedral symmetry upon our computations for all
the determinants. However,D2 symmetry is used as a
common denominator for all the 10 Slater determinants. (The
computations are speeded up about four times by taking
advantage of the symmetry facility of the ADF; in tetrahedral
symmetry, all the individual orbitals, and thereby all the
determinants, belong to symmetry species of the point group
D2. This means that the electron density and the associated
effective potentials of the uonRR-pairs belong to the unit
representation ofD2.)

One ADF computation is now performed for each of the
determinants using the fixed orbitals from the dq-AOC
computation.

At this stage we have obtained energy values for all the
10 completely definedMS ) 1 states of the partially filled
shell embodied in our complex VCl4

- or any of its homo-
logues with the other halides. These energies are not
eigenenergies. Through the ligand-field mimicking process,
they correspond to diagonal elements of the strong-field
Hamiltonian matrix. The set of energies contains sufficient
parametrical information to allow also the nondiagonal
elements to be determined. Thus, the whole ligand-field
energy matrix and thereby its eigenvalues may be computed.

The two final steps are a ligand-field step (F) and a
comparison step (G) in which 10 linear equations are set up
to determine the computed empirical parameters of the
parametrical dq model for highest spin multiplicity.

F. Energies in the Ligand-Field Parametrization.The
conventional energy diagram (Orgel diagram26) of Figure 1
illustrates the ligand-field description of tetrahedral d2

complexes for the higher spin multiplicity. In the weak-field
limit the energies of3P and3F are not those of the gaseous
ion, but rather refer to the nephelauxetically modified atomic
states.∆ ) ∞, that is, the strong-field limit, refers to the
pure strong-field configurations, which are reached asymp-
totically. The intercept of the tangent of any state graph with
the ordinate axis expresses the interelectronic repulsion of
that state at the abscissa in question. This intercept is
invariably3F for 3A2 and3T2 but changes dramatically27 with
∆ for the two3T1 states. Seen from the weak-field side,3P

(24) Daul, C.; Goursot, A.Int. J. Quantum Chem.1986, 29, 779.
(25) (a) Harnung, S. E.; Scha¨ffer, C. E.Struct. Bonding (Berlin)1972, 12,

201. (b) Harnung, S. E.; Scha¨ffer, C. E. Ibid. 1972, 12, 257.

(26) Orgel, L. E.J. Chem. Phys.1955, 23, 1004.
(27) Jensen, G. S.; Brorson, M.; Scha¨ffer, C. E.J. Chem. Educ.1986, 63,

387.

Oh ⊃ D4h ⊃ D2h (5)

D∞h ⊃ D4h ⊃ D2h (6)

| + +
(z2)(yz) |

| + +
(z2)(x2 - y2) |
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and3F become mixed beyond 50% across the diagram. Seen
from the strong-field side, the3T1 states of the subconfigu-
rations t22 and et2 become mixed more than 50%. In other
words, the noncrossing region is traversed (cf. Figure 1).
The strong-field side, which represents the relevant view in
this KS-DFT context, is illustrated in Table 1, which shows
the parametrical expressions of the most pertinent asymp-
totes. These expressions correspond to our ADF-computed
energies.

Figure 2 illustrates the pair interaction energies of theRR
pairs of real spin orbitals. The pair interactionκ(yz,zx), for
example, is equal to the difference between the Coulomb
integral and the exchange integral associated with the two
orbitals. The expectation value of the repulsion energy is
expressed in the parameterB1. In decreasing energy order,12

we have four spatial pair-energy classes that may beD∞-
labeled asδδ, σπ, ππ or πδ, andσδ. ππ andπδ fall in the
same class because of the high symmetry inherent in the d

orbitals as expressed in eqs 5 and 6. Clearly, theππ(D∞)
pair of the Slater determinant|(yz)(zx)| and theπδ(D∞) pair
of |(yz)(xy)| must have the same energy with the repulsion
operator, because 1/r12 is anR3i-symmetrical operator. We
are now able to useHav, B1, and∆ to express the expectation
values of the energies of the parametrical d2 model with
respect to all our strong-field Slater determinants.

G. Ten Linear Equations in Hav, B1, and ∆. We now
use the 1:1 relationship between the uonRR-pairs of real
spin orbitals of the ADF and the strong-field determinants
of LFR.12 The ADF energies of step E can be uniquely
associated with the parametrical strong-field expressions of
step F. Thus the partially filled shell fixed-orbital uon
energies are set up in a diagonal matrix,HADF

diag.uon, and the
elements are identified with the diagonal elements of the
strong-field energy matrixHLFR

diag.sf of the parametrical d2

model, and by juxtaposition and equalization of these two
matrices, we obtain 10 linear equations

where

involves the three standard parametersHav, B1, and∆ of the
LFR, 1 being the 10× 10 unit matrix.

It should be noted thatQ∆
sf is already diagonal, that is,

The results for VCl4- are collected together in Table 2. The
numbers in the table are the diagonal elements of the
symmetry-determined matrices1, QB1

sf , andQ∆
sf.

The rows of Table 2 are ordered in terms of LFR strong-
field coefficients, the ligand field being given a higher
priority than the repulsion. The four rows in the middle
belong to the same strong-field subconfiguration et2 and have
the repulsion energies characteristic of the four spatial pair-
energy classes (Figure 2). It is noteworthy that this way of
fixing the order of priorities on the basis of LFR parameter
coefficients results in an ordering also of the ADF energies.
The relative importance of the ligand-field and repulsion
terms will be further discussed in section 4.

Once the symmetry has been taken care of, the 10 pieces
of (MS ) 1)-states provide six pieces of independent ADF
computational information to determine the three parameters
Hav, B1, and∆ (Table 2). This determination has been done
by the linear least squares procedure to obtain the parametric
results of Table 3.

4. Comparison of the Way of Focusing upon d2 States
by Our KS-DFT Approach and by the Semiempirical
Ligand-Field Approach

KS-DFT has the limitation that it does not allow the
computation of the energy quantities that correspond to the
nondiagonal elements of the Hamiltonian. By our assump-
tions, these “nondiagonal elements of the ADF” are implied,
however, by the more general form of eq 7, which may be

Figure 1. Ligand-field energy diagram (Orgel diagram26) for tetrahedral
d2 complexes showing the triplets only. In the expanded radial function
model,4c or, with a more specific name,27 the parametrical d2 model,3A2

and3T2 have pure3F parentages. However,3F and3P are mixed in the3T1

multiplets (unless∆ is zero; cf. text and Table 1). The3T1 asymptotes have
been given as dotted lines whose crossing point corresponds 50% mixing
of t22 and et2.

Figure 2. Pair-interaction energies between the standard real d orbitals
with R spin. Energies are expressed in the Racah parameterB1 where the
suffix is our addition to emphasize that we are here concerned withMS )
S ) 1 only. This figure illustrates the spatial energy classes12 of Table 2.

HADF
diag.uon= HLFR

diag. sf (7)

HLFR
diag. sf) Hav1 + B1QB1

diag.sf+ ∆Q∆
diag.sf (8)

Q∆
sf ) Q∆

diag.sf (9)
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written as

where the first term is the diagonal matrix that contains the
energies obtained by the uon computation of the ADF, and
where the right-hand side is

By use of eqs 7-11 we obtain a definition of the nondiagonal
elements of the ADF

where QB1
sf , and thereby its nondiagonal partQB1

nondiag.sf, is
symmetry determined. The only difference between the two
strong-field equations 7 and 10 is the nondiagonal elements
stemming fromB1QB1

sf . These elements are a necessary
consequence of the LFR model, and, by the assumption of
a general 1:1 relationship between the ADF and LFR models,
they are implied also for the ADF, which is thereby adapted
to an energy-matrix form allowing the computation of its
eigenenergies (and eigenfunctions) under the constraints
imposed upon the Kohn-Sham DFT by the dq-AOC
computation and by the LFR modeling.

The formalism described here also allows a norm-square
comparison of the full semiempirical ligand-field description
of [VCl4]- and the present uon KS-DFT description, which
represents the diagonal part of the strong-field matrices, that
is, the tetrahedral strong-field approximation, in which the
ligand field, but not the repulsion, is diagonal. The com-
parison is made by using the matrix equation

The ligand-field matrix∆Q∆
sf is orthogonal to both the

nondiagonal and the diagonal part of the repulsion matrix;
in turn these two latter matrices are mutually orthogonal by
the definition of eq 3. Therefore, if the two equalities of eq
13 are thought of as two vector descriptions ofHh LFR

sf (in the
sense described in section 2), then the vectors within each
of these descriptions are mutually orthogonal. The length of
such a vector is the square root of the norm square of the
corresponding matrix, i.e., the parameter times the square
root of the norm square of its coefficient matrix.

Using eq 3 the norm square of the diagonal matrixQ∆
sf

can be found from the coefficients to∆ of Table 2,

and the norm square ofQB1
diag.sf can be found from the

coefficients toB1 of Table 2,

However, the operatorQ̂B1 is diagonal in the weak-field basis

only and its norm square is accordingly

(cf. illustration b).
The norm-square ofQ̂B1 may alternatively be written as

Combining eqs 15 and 17 one concludes that only 297/945
) 11/35 of the information aboutQ̂B1 lies in the strong-field
diagonal, which is that taken from ligand-field theory in order
to computeB1 and thereby obtain the nondiagonal elements
of KS-DFT within the partially filled shell (cf. eq 12) and
thereby the computed eigenenergies.

Using the norm squares of the coefficient operators
together with the computed parameters for VCl4

-, we have
depicted the vectors corresponding to eqs 10 and 13 in Figure
3.

The comparison ofĤLF and ĤR in the full matrix
description and in the strong-field approximation is interest-
ing also in terms of sum-square splittings. By using the∆
value for VCl4- from Table 3 with eq 14, one obtains

HADF
diag.uon+ HADF

nondiag) HADF = HLFR
sf (10)

HLFR
sf ) Hav[

3P3F]1 + B1QB1
sf + ∆Q∆

sf (11)

HADF
nondiag≡ HLFR

nondiag.sf) B1QB1
nondiag.sf (12)

Hh LFR
sf ) B1QB1

sf + ∆Q∆
sf ) B1QB1

diag.sf+ B1QB1
nondiag.sf+ ∆Q∆

sf

(13)

〈Q̂∆|Q̂∆〉 ) 〈Q∆
sf|Q∆

sf〉 ) 〈Q∆
diag.sf|Q∆

diag.sf〉 ) 18/5 (14)

〈QB1
diag.sf|QB1

diag.sf〉 ) 297/2 (15)

Figure 3. Vectorial representation of the connection between our ADF
and LFR descriptions of the energy splitting of theMS ) 1 states of the d2

configuration of VCl4-. The strong-field matrices are represented by three
mutually orthogonal vectors, which add up to the vector representing
HLFR

sf . The horizontal vectors representB1QB1
diag.sf and∆Q∆

sf and the vertical
one B1QB1

nondiag.sf. The two former ones are those involved in establishing
the 10 linear equations connecting ADF and LFR (cf. eq 7).QB1

nondiag.sf is
symmetry determined, and, therefore, once the parameterB1 has been
obtained by solution of these equations, the matrixB1QB1

nondiag.sfis known as
well and thus the complete energy matrix. By the assumption of a general
1:1 relationship between the ADF and the LFR, an ADF energy matrix can
now be defined, and thus the eigenenergies of the ADF be calculated. Note
that HADF

diag.uon is computed directly by the ADF whileHADF
nondiag is derived

from HADF
diag.uonby the use of the 1:1 link (cf. also eqs 10 and 12).

〈Q̂B1|Q̂B1〉 ) 〈QB1
wf|QB1

wf〉 ) 〈QB1
diag.wf|QB1

diag.wf〉 ) (21/2)2 × 3 +

(9/2)2 × 7 ) 945/2 (16)

〈Q̂B1|Q̂B1〉 ) 〈QB1
diag.sf|QB1

diag.sf〉 + 〈QB1
nondiag.sf|QB1

nondiag.sf〉 )
945/2 (17)

SSS∆ ) 〈Q̂∆|Q̂∆〉∆2 ) 〈Q∆
sf|Q∆

sf〉∆2 ) (18/5)(0.523µm-1)2 )

0.9847µm-2 (18)

Using Kohn-Sham DFT in Modeling Ligand-Field Theory

Inorganic Chemistry, Vol. 42, No. 13, 2003 4095



and with eq 15, one obtains

From eqs 18 and 19 one calculates a ratio of 1.7 between
the corresponding root-mean-square splittings, thereby ob-
taining a qualitative understanding of why the priority, LF
before R, rationalizes the ADF energy order of Table 2.
These results should be compared with

obtained from eq 17, showing that repulsion is the (slightly)
dominating term when the full LFR model is used. With the
equivalence between the ADF and the LFR, the comparison
of eqs 18-20 also becomes relevant for the ADF (cf. Figure
3) by quantifying how this essentially one-electron model
overemphasizes the one-electron parameter∆ of eq 18 over
the two-electron parameterB1.

5. Results and Discussion

The computed values for the parameter sets{∆, B1} given
in Table 3 may be compared with the experimental values14c

based upon the reflection spectra of [(C6H5)4As]VCl4 and
[(C2H5)4N]VBr4. The parameter sets based upon these data14c

were given as∆ ) 0.553µm-1 andB1 ) 0.0494µm-1 for
VCl4- and ∆ ) 0.520 µm-1 and B1 ) 0.0435 µm-1 for
VBr4

-.
The computed and experimental results for∆ andB1 are

remarkably close (Table 3). However, before evaluating the
results, it is important to clarify at least a couple of the
limitations of ligand-field theory. First of all, the experiments,
which this model theory is concerned with, can only be
partially accounted for. The experiments involve vibronic
optical transitions, often represented by two or three broad
bands, each with a band maximum, width, and intensity. The
theory is electronic only, and usually energy differences
between certain of its eigenvalues are identified with
positions of observed band maxima. The theory needs various
extensions in order to be able to provide as much as a
qualitative idea about the other features of the experimental
spectra. The simplest connection between experiment and
model theory regarding eigenvalues is an association through
the idea of vertical transitions. This is what we have aimed
at mimicking by our fixed nuclei and fixed orbitals DFT
model.

With all this conceptual complexity in mind, it is remark-
able that the∆ value is reproduced so well in the orbital
energy difference obtained from the dq-AOC-SCF-ADF
computation as well as in the least-squares ADF results based
upon unity occupation numbers for fixed dq-AOC orbitals
(cf. heading C of section 2 and Table 3). It is at least equally
remarkable that the nephelauxetic phenomenon, which para-
metrically could be considered to be an experimental fact,12

in the present computation is not only parametrically
reproduced but also associated with the characteristic charge

transfer17a from the ligands to the central ion. This charge
transfer was originally with great chemical satisfaction taken
as the phenomenon’s qualitative explanation, which was used
to name it: an expansion of the partially filled shell caused
by the screening from the central ion nuclear charge by the
coordinative covalency, here charge transfer from the
chloride ligands to the metal ion V3+ (central field
covalency4c). Here, using a Mulliken population analysis as
a basis, the charge carried on the vanadium center in the
restricted dq-AOC-SCF computation for VCl4

- is found to
be 0.63 to be compared with the formal charge of 3. In this
analysis the chloride ions have accordingly collectively
transferred a negative charge of 2.37 units to the V3+ ion in
the bonding process. For comparison the integrated net spin-
density on V is close to 2, i.e., the number of unpaired
electrons (cf. Table 3 and section 3B).

Jørgensen, in discussing the nephelauxetic phenomenon,
gave an additional explanation, which he calledsymmetry-
restrictedcovalency. In an LCAO description, this is the fact
that the eigenorbitals carrying the partially filled shell have
been diluted as regards their contents of central ion d orbitals
(cf. Table 3). The d-d repulsions were then assumed to make
up the dominating terms in the repulsion between the
electrons in the eigenorbitals. This assumption was used
successfully by Jørgensen to establish his idea of optical
electronegativities28 whose numerical values were obtained
from observed electron transfer spectra, corrected for repul-
sion by observed spin-pairing energy29 expressions obtained
from ligand-field spectra. This assumption was also the basis
for the present method of mimicking the parametrical dq

model.
The fact that the spectrochemical series (∆ series) and the

nephelauxetic series (B series) are roughly invariant series
spanning over all classical transition metal complexes is
perhaps the most remarkable feature of ligand-field theory.
Therefore, in order to try to follow up the success of our
VCl4- and VBr4- computations with a broader inorganic-
chemistry perspective, we have extended our calculations
to a few comparable systems. In Table 3 we have added the
ions VF4

- and VI4-, which represent parametric extremes
in both series. (It should be mentioned in this context that
VBr4

- was prepared from [(C2H5)4N]V(CH3CN)2Br4 by a
heating process. It should not, therefore, worry us too much
that the VF4- and VI4- ions have not yet been prepared
because this may well be due to competition for available
coordination space under almost all chemical conditions. For
example, VF4- must be formed under conditions where
VF6

3- is a competitive alternative.)
This paper has been concerned only with the states with

maximum spin-multiplicity. The parametrization of the
repulsion involving the complete set of dq states is more
complex. In this case an additional repulsion parameter is
required in the SCS model. This parameter can be chosen
as Jørgensen’s spin-pairing energy parameterD (Table 3).29

(28) Jørgensen, C. K.Orbitals in Atoms and Molecules; Academic Press:
London, 1962.

(29) Jørgensen, C. K.Modern Aspects of Ligand Field Theory; North-
Holland Publishing Company: London, 1971.

SSSB1,diagonal) 〈QB1
diag.sf|QB1

diag.sf〉(B1)2 )

(297/2)(0.0479µm-1)2 ) 0.3407µm-2 (19)

SSSB1 ) 〈Q̂B1|Q̂B1〉(B1)2 ) 〈QB1
wf|QB1

wf〉(B1)2 )

(945/2)(0.0479µm-1)2 ) 1.0841µm-2 (20)
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In atomic dq ions the ratioD/B lies between 7.4 and 7.9 in
most cases, and for atomic V3+, the valueD/B ) 7.6 was
found. For the VX4

- complexes, the ADF computed values
for D andD/B have been given. Experimental values forD
are not available, but the ADF values forD obey the
hypothesis of an invariant nephelauxetic series and theD/B
ratios are not far from their atomic values.

The spectrochemical and the nephelauxetic series are borne
out by our computational results, and, in particular, the
pronounced difference between fluoride on the one hand and
the three heavier halides on the other one, known from
ligand-field studies as well as from chemistry, can be
observed in the two series of spectral parameters. In the
Mulliken charges a small irregularity occurs between chloride
and bromide. The same is true for the vanadium p-electron
content in the t2 orbitals (Table 3). However, regarding the
d electron delocalization covalency, the halide series is as
chemically expected. For example, from the dq-AOC-SCF
computation theσ interacting t2 orbitals are found to have
75.17% 3d character in VCl4

- and only 73.50% in VBr4-

where the percentages refer to the 3d orbital of the atomic
fragment V3+. The computational result is that the degrees
of covalency of the VIII-chloride and VIII-bromide bonds
are not very different, but the example also illustrates that
the concept of covalency cannot be quantified one-
dimensionally. In actual fact, there are ADF standard basis
sets that reverse Cl- and Br- in the nephelauxetic series.
However, F- and I- are invariably placed on the wings (the
position of F- being isolated from the other three halides).

6. Conclusions

The present simple KS-DFT modeling provides an inde-
pendent approach to the parameter world of ligand-field
theory. This theory’s qualitative molecular orbital interpreta-
tion is completely confirmed by the dq-AOC computation.
Here this statement has been confirmed for the VX4

- (X )
F, Cl, Br, I) systems, but it is yet to be seen how general its
validity is. The 1:1 mimicking of ligand-field theory by KS-
DFT allows the KS-DFT energies to be set up in an energy
matrix that can be diagonalized so as to obtain the KS-DFT
eigenstates.

We find our results unexpected for three different reasons
related to the way the results are obtained.

1. The method is based on a unification of the e and t2

molecular orbitals of the partially filled shell, which would
become commensurable by suppression of their molecular
character and then converge into a dq configuration, e2q/5t23q/5

f dq.
2. The method involves Kohn-Sham spin orbitals whose

spatial factors must be real. They remain fixed (frozen) all
through the ligand-field-theory mimicking process, fixed
orbitals being a prerequisite for this process.

3. In spite of the fact that the e and t2 eigenorbitals are
different with respect to ligand orbital contents, the Slater-
Condon-Shortley parametrization of their repulsion energies
is successful for all VX4- systems.
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